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The application of state-of-the-art signal processing often differs between off-line and on-line real-time
application domains. Off-line processing techniques may be used to accurately reduce signal noise and
spot errors before analysis. However, without the global signal information available to off-line processes,
such techniques can be difficult to reproduce in on-line real-time applications. This paper presented
methods that were developed to support a state-of-the-art Computer-Based Speech Therapy System.
These methods included on-line head correction and low-pass filtering and aimed to reproduce off-line
processing data quality when using a real-time clinical feedback application. The adequacy of these
methods was evaluated relative to the off-line processing “gold” standard and in a context of computing
a specific kinematic parameter (i.e. articulatory working space). The results showed that the on-line
real-time output values were highly correlated with the off-line manually-processed values.

Keywords: Electromagnetic Articulography (EMA), Wave Speech Research System, Speech
Kinematics, Computer-Based Speech Therapy

1. Introduction

The use of augmented kinematic visual feedback for motor learning and recovery has been sup-
ported by motor learning and rehabilitation science and practice, fields that are currently moving
towards visualization and gamification. In the realm of speech analysis and rehabilitation, research
has been mostly concerned with speech acoustics. There is a rapidly growing interest, however,
to analyze articulatory kinematics and apply state-of-the-art practices to rehabilitation of motor
speech disorders such as dysarthria and apraxia of speech (AOS). It is our current premise that an
effective and usable system will translate into meaningful quality-of-life outcomes for many people.

Electromagnetic articulography (EMA) sensor technology holds great potential for new advances
in user-oriented health and wellness applications such as speech therapy and accent modification.
EMA provides access to the kinematics of articulators such as the jaw, lips, and particularly the
tongue, which is typically hidden from view during speech. There are however a number of chal-
lenges in employing EMA, including sensor noise, erroneous artifacts, missing data, and necessary
data transformations. The standards for addressing these issues in post-processing, however, have
been established (Green, Wang and Wilson 2013; Gracco 1992). The real-time on-line processing
methods relevant to various clinical applications have not been established. In this paper, we de-
scribe and address a series of computational issues concerning the use of EMA sensor technology,
as deployed in the specific application domain of computer-based speech therapy (CBST).
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2. Background

2.1 Electromagnetic Articulography (EMA)

EMA is a sensor-tracking technology based on the principles of electromagnetic induction and
is a powerful alternative to other articulatory tracking methods such as cineradiography, x-ray
microbeam, and ultrasound. The creation of EMA stems from a long history of the need to accu-
rately track articulators during speech and non-speech tasks (Hixon 1971). While visible articulator
movements, such as those by the lips and jaw, can be tracked using a variety of both custom- and
commercially-developed technologies, tracking the hidden tongue presents challenges.

Early methods for tracking the tongue were primarily limited to two-dimensional (2D) data out-
puts, and the devices required lengthy calibration processes (Perkell, Cohen, et al. 1992; Schönle,
Gräbe, et al. 1987). Later methods afforded full three-dimensional (6D) trackingthe position and
rotation of sensors on the tongue (Kaburagi, Wakamiya and Honda 2005; Zierdt 1993). Commercial
speech research solutions are now readily available, such as the Carstens AG500 line of products
(Carstens Medizinelektronik GmbH, Bovenden) and the Wave Speech Research (NDI, Waterloo)
systems. These commercial systems have been tested for their accuracy and demonstrate ade-
quate performance (Savariaux, Badin, et al. 2017; Berry 2011; Yunusova, Green and Mefferd 2009;
Kroos 2012). Most of these current commercial systems, such as the Wave, produce audio-aligned
six-dimensional (6D) kinematic time series information, and they come with recording and data
transformation software, as well as APIs (Application Programmers Interfaces) for developing ex-
ternal applications.

2.2 Computer-Based Speech Therapy using EMA

EMA has been successfully deployed in the domain of CBST. This deployment spans the clinical
spectrum including speech therapy for accent training, neurologic disorders, and hearing/deafness.
For example, Levitt and Katz (2010) reported success when using EMA to facilitate training of a
Japanese flap in eight monolingual English speakers. Children with hearing impairment were suc-
cessfully trained to produce Mandarin words using an EMA-driven “talking-head”; improvements
in articulation of bilabial, alveolar, and retroflex consonants with subsequent increases in speech
intelligibility were reported post training (Liu, Yan, et al. 2013).

The literature also describes efficacious applications of EMA-provided visual feedback in speech
therapy for AOS post stroke, a condition characterized by the inability to achieve consistently cor-
rect articulatory positions for speech sounds, resulting in frequent speech errors (Katz and McNeil
2010; Katz, McNeil and Garst 2010). EMA-supplied augmented feedback led to improvements in
the accuracy of tongue placement and speaking abilities in a number of speakers with AOS (Katz
and Mehta 2015; Katz, McNeil and Garst 2010; Katz, Carter and Levitt 2007; Katz, Bharadwaj,
et al. 2002; Katz, Bharadwaj and Carstens 1999).

Recently, OptiSpeech, was designed to deliver positional targets to train articulator accuracy
and repeatability of place of articulation for American English consonants (Katz, Campbell, et al.
2014). Our group has previously reported on the design of a CBST system to deliver game-based
visualizations to improve speech production for patients with dysarthria due to Parkinson’s Disease
(PD) (Yunusova, Kearney, et al. 2017; Haworth, Kearney, et al. 2014; Shtern, Haworth, et al. 2012).

2.3 Data Quality and Processing

As therapeutic developments move forward, technological limitations and challenges of the EMA
systems have to be carefully considered. A number of existing studies have addressed the issue of
quality and accuracy of data captured by EMA devices (Savariaux, Badin, et al. 2017; Berry 2011;
Yunusova, Green and Mefferd 2009; Kroos 2008).

The analysis of positional and rotational data from the Carstens AG500 has revealed various
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data artifacts. A number of these artifacts were dependent on the characteristics of the electro-
magnetic field. In some active regions, the accuracy of the AG500 worsened, revealing maximum
error estimates of up to 5mm for non-speech and 2mm for speech movements (Yunusova, Green
and Mefferd 2009; Kroos 2008).

The Wave system’s positional error increases relative to the orthogonal distance from the field
generator. Estimates made using a rigid four-bar linkage to simulate speech-like dynamic movement
reveal that error grows upwards of 9mm and 66mm for the 300mm2 and 500mm2 active fields
respectively (Berry 2011). In speech movements, the error estimates were relatively small, being
controllably sub-millimetre within 150mm of the field generator. The difference in error estimate
between the simulated dynamical non-speech movements and speech movements is attributed to
slower sensor speeds and smaller ranges of variation in orientation during speech.

Furthermore, a recent comparative study of the Wave system and the AG500 revealed trou-
blesome errors (Savariaux, Badin, et al. 2017). These errors ranged in magnitude from 0.3mm to
21.8mm and increased depending on the head/sensor position relative to the field generator. The
Wave was prone to errors that were larger in magnitude than the AG500. In the Wave, the lowest
errors were associated with the negative axes closest to the field generator. It is recommended that
when using the Wave, the speaker is positioned close to the field generator and oriented the same
way as the reference system.

In addition to the errors associated with the field positioning, error-producing issues may include:
(1) expected high-frequency noise; (2) sudden rapid positional jumps, or spikes, in data potentially
due to electromagnetic noise in the environment; (3) and errors related to rapid changes in, or high
variability of, velocity and orientation as noted with artificial movements (see Berry (2011)) but
not speech movements (Savariaux, Badin, et al. 2017). In addition to these tracking errors, missing
data may occur due to out of field or briefly malfunctioning sensors. In addition to error sources,
the freedom-of-movement field-based nature of these types of systems also introduces a need to
account for head motions, which is often accomplished by re-orienting articulators sensors to the
reference (head) sensor (Perkell, Cohen, et al. 1992; Westbury 1991).

Overall, these issues may lead to erroneous raw and derived data with inflated measurement
variability. Only after considering all of these potential sources of error and data variability can
we implement EMA for tracking articulatory motion on-line in a therapeutic context. This paper
seeks to address these issues via the evaluation of the on-line real-time data processing routines
and their effect on the derived measure relative to the existing post-processing “gold” standards.

3. Methods

3.1 Instrumentation

Figure 1. An example sensor setup showing the head sensor,

attached to the head strap, and the tongue sensor which is af-
fixed directly to the tongue using dental glue.

Speech movement tracking requirements
were realized by the Wave Speech Research
System. Our sensor array is composed of (i)
a 6 Degree of Freedom (DoF) sensor fixed to
the head, and (ii) a single 5 DoF tongue sen-
sor. The head and tongue sensors are shown
in Fig. 1. The tongue sensor is attached on
the tongue blade, approximately 1cm away
from the tip, by means of non-toxic dental
glue (PeriAcryl R©90, Glustitch). Participants
were positioned relative to the field genera-
tor so as to reduce tracking errors (Savari-
aux, Badin, et al. 2017). Movement data
were acquired at a sampling rate of 100Hz,
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which is lower than the highest available sampling rate of the system (400Hz). The lower rate re-
duces errors associated with data buffering along the communication channels. It is also sufficient
for our purposes, since the frequency range of the tongue’s motion associated with typical speech
production is under 20Hz (Gracco 1992).

The hardware architecture of our system has been described elsewhere (Shtern, Haworth, et al.
2012). Data from the Wave was temporarily stored locally on the Wave control machine for offline
processing. Remote real-time data streaming for on-line real time data access was accomplished via
the TCP–based Real-Time Application Program Interface (RTAPI) (NDI, Waterloo). The RTAPI
allows for custom-built software to access Wave sensor data from a remote or networked computer.

3.2 Offline Processing

The standard post-processing routines for kinematic data include: (a) head correction; (b) data
re-sampling; and (c) data filtering (Westbury 1994; Gracco 1992). Head correction with the Wave
is performed through a black-box export method, provided by software included with the Wave
system; it effectively re-expresses data relative to the head-based coordinate system as opposed
to the field generator coordinate system. The signal is re-sampled regularly in time using a cubic
interpolating spline, since many global smoothing filters assume a regular sampling period and small
timing inconsistencies may occur during recording. The data is then smoothed using a low-pass
filter (Green, Wang and Wilson 2013). The filter has an empirically determined cut-off frequency
depending on the articulator (e.g., jaw versus tongue tip versus tongue dorsum) and phonetic
context analyzed (Gracco 1992). We used a 15Hz cut-off frequency for tongue blade movement
data.

3.3 On-Line Processing Pipeline

An on-line processing pipeline has been developed to rectify the data during real time acquisition.
The pipeline consists of two main processes employed prior to derivation of necessary kinematic
measures or metrics (Section 3.4) - head correction then filtering.

3.3.1 Head Correction

The head correction transformation is predicated on a head position vector and rotation quaternion,
ph, qh respectively. The tongue sensor, or any other sensor to be head corrected, is represented by a
position vector and an orientation quaternion, pt, qt respectively. Finally, the head corrected tongue
position and rotation, pht , q

h
t , are computed as follows:

pht = Im(q−1
h ∗ (0, pt − ph)), qht = q−1

h ∗ qt (1)

where Im is the imaginary part of a quaternion, and ‘*’ indicates quaternion multiplication. In
practice, to subtract head rotations, an angle axis rotation is formed by the quaternion and the
sensor is rotated around the point pi after being translated by pt − ph.

3.3.2 Filtering

To address the variety of EMA-based error sources in a real-time setting, noted in Section 2.3, a
moving median filter is employed. A moving median filter is a standard method of low pass filtering
data (Justusson 1981). The moving median works locally on the filter window and handles rapid
artifacts while avoiding the introduction of artificial data - as may occur with averaging filters. The
window sizes were determined empirically to minimize processing time (median filters must sort
data first), and qualitatively reduce high frequency noise while preserving known speech movement
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features. A window size of 3-5 samples were determined to work best for data sampled at 100Hz,
while a 6-21 sample window size worked best for data sampled at 400Hz.

3.4 Metric Derivation: Articulatory Working Space (AWS)

Figure 2. An illustrative AWS for tongue blade
(T1) sensor, when tongue movement was generated

by a male speaker with PD saying the sentence,

“Sally sells sevens spices.”

A variety of kinematic metrics can be derived from
EMA-based data. The choice of metric is highly de-
pendent on the treatment population and the focus of
the therapy. For example, Katz and colleagues used an
experimenter-defined circular target region at the alve-
olar ridge to train elevation during consonant sounds
in speakers with AOS (Katz and Mehta 2015; Katz
and McNeil 2010; Katz, Carter and Levitt 2007).

The pilot target population for our initial set of stud-
ies were adults diagnosed with a speech disorder (e.g.
dysarthria) due to PD. This population shows an over-
all reduction in articulatory movements in the lips,
jaw, and tongue during speaking (Walsh and Smith
2012; Weismer, Yunusova and Bunton 2012). This re-
duction of movement size is reflected in the individ-
ual’s articulatory working space (AWS, a 2D repre-
sentation of which is shown in Figure 2), the convex
hull surrounding the movement trajectory traversed
during a speaking task (Weismer, Yunusova and Bun-
ton 2012). The spatial volume (mm3) of the 3D AWS
is used to characterize a patient’s movement range. Thus, increase in AWS over the course of
therapy, is chosen as a treatment target and yoked to real-time visual feedback in a CBST system.

3.4.1 Real-time AWS Volume

A 3D convex hull around articulator trajectories results in an irregular polyhedron. To discretize the
space of this hull and compute its volume, i.e. operationalize the AWS, a Delaunay triangulation in
three dimensions, or tetrahedralization is found. This algorithm generates space-filling tetrahedrons
whose combined free surface forms a convex hull. The volume can then be computed as the total
sum of the tetrahedron volumes, as follows:

VAWS =
∑
t∈T

|(at − dt) · ((bt − dt)× (ct − dt))|
6

(2)

where · and × are the dot and cross product respectively, at, bt, ct, dt are the vertices of the tetra-
hedron t, and T is the set of all tetrahedrons.

The Delaunay triangulation algorithm used in this work is a real-time approach inspired by
the classic QHull algorithm (Sehnal and Campbell 2014). Since QHull-based convex hulls may
“collapse” under certain degenerate point additions, the real time AWS derivation is sensitive to
degenerate regular point configurations (colinear, cospherical, coplanar, and grids), which must be
taken into account while computing AWS. For real-time purposes, degenerate points are dealt with
using pairwise identical point removal and input joggling. The pairwise removal operation culls
points considered equal in position, i.e. when the distance between the two is less than an epsilon
value (10−7mm). The input joggling process is carried out by point vector addition of random noise
within a sphere of radius small enough not to impact measures (10−6mm).
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3.5 Evaluation

Three analyses were conducted, comparing the on-line with off-line (“gold” standard) processing
approaches. These included: (1) head correction; (2) low-pass filtering; and (3) metric derivation
are presented below.

3.5.1 Comparison of Head Correction Routines

To test the accuracy of head correction between the on-line and off-line methods, a single 6 DoF
and one 5 DoF sensor were fixed to a rigid wooden splint 50mm apart. The 6 DoF sensor was used
as a reference system for the 5 DoF sensor.
Task. Four separate tests were conducted using the rigid body configuration: (1) near field

generator stationary sensors test (near-static); (2) near field generator moving sensors test (near-
moving); (3) far field generator static sensors test (far-static); (4) and far field generator moving
sensors test (far-moving). The following distances were measured orthogonal to the patient-facing
side of the field generator. The static sensor tests were conducted at a fixed distance, with the
near experiment at 100mm from the field generator and the far experiments 200mm from the field
generator. The moving sensor tests were conducted by making random translational and rotational
movements within 150mm from the field generator for the near experiments and further than
150mm for the far experiments.
Measure. The head-corrected positional data for the 5 DoF sensor was recorded using each of

the on-line and the off-line pipelines. For each pipeline condition, the standard deviation of the
values in each of the three positional dimensions (X, Y, & Z) was derived. Flawless head correction
would produce a value of 0 in each dimension.

3.5.2 Comparison of Filtering Routines

To test the effect of two different filtering approaches on tongue kinematics, data were collected
from a single speaker (Male, 23 years of age). Tongue blade movements were captured with a
single 5 DoF sensor in real time and head corrected using the built-in Wave routine before being
median filtered (on-line) and low-pass filtered (off-line) using a bi-directional low-pass 5th-order
Butterworth filter.
Task. The participant was asked to repeat a list of 37 different sentences at a normal comfortable

speaking rate and loudness. Only recordings where zero positional data loss occurred (N = 25)
were used in the analysis.
Measure. Kinematic data, head-corrected and filtered using the respective on-line versus off-

line routines, were compared by measuring the Root-Mean-Square Error (RMSE) between the two
processing sources.

3.5.3 Comparison of Metric Computation Routines

To compare the on-line and off-line derived AWS metrics, tongue blade movements were collected
from a large set of clinical participants.
Participants. Nine participants were recruited for a study of articulatory movements in PD.

The group included seven males and two females between the ages 57 and 90 diagnosed with PD
and at various times post-diagnosis. All participants reported to be optimally medicated and not
fatigued before the recording session (Fisk and Doble 2002). The primary inclusion criteria were the
clear presence of hypokinetic dysarthria with impairment of speech intelligibility and perceptual
deficits in the articulatory domain (i.e., imprecise consonants, distorted vowels, and short rushes of
speech). All participants provided informed consent and were covered under the University Health
Network Research Ethics Board (reference: 13-6235-DE )
Task. Each participant produced on average fifteen repetitions (9 - 20 per participant) of 4

sentences in a random order (N = 742 total).
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Measures. Kinematics signals, head-corrected and filtered using the respective on-line versus
off-line routines, were used to compute the AWS as well as the duration of each sentence. Sen-
tence durations were recorded, as a difference between the timing of speech onsets and offsets was
expected between the on-line processed and off-line post-processed recordings. This difference re-
flected the fact that during the on-line and off-line procedures, the onsets/offsets were controlled
manually and separately by two different human operators. On-line processed recordings were
segmented by a clinician (record start/stop) who was performing a CBST session, however the
off-line processed recordings were segmented by an expert operator (research assistant) during
post-processing. To ensure fair comparisons the recordings with differences in durations between
the two methods, larger than 0.5 seconds, have been removed from further analysis (N = 255
total). As a result, a total of 487 recordings were analyzed.

3.6 Results

3.6.1 Head Correction

Head correction results are summarized in Figure 3. The head-corrected 5 DoF sensor positions,
using on-line and off-line head correction methods, revealed that the error (standard deviations)
were relatively small, particularly for near static and moving conditions. Far-field conditions pro-
vided larger deviations, which were particularly notable in the moving condition. This was likely
due to the increases in error associated with orthogonal distance from field generator, previously
reported in the literature. Interestingly, the far-moving condition showed more variability with the
off-line as compared to the on-line method. A Levene’s test (Levene, et al. 1960), to understand
the homogeneity of variance, showed that the variance was significantly different between on-line
and off-line head-correction methods across all conditions (p < 0.0001). The difference between
on-line and off-line methods are difficult to fully understand because the off-line method for head
correction is closed-source and unavailable for further analysis.

Error in Head Motion-Corrected Sensor Position in 2x2 Conditions: SD Plots
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Figure 3. Standard deviations, in mm, of a rigid body 5 DoF sensor after head correction obtained using the on-line and

off-line pipelines. The orange line shows the scaling factor of the static sensor error, as static sensor errors were orders of
magnitudes smaller than moving sensors.
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3.6.2 Filtering

Figure 4 shows an example of the filtering process effects when the kinematic signal is noisy.
Summary statistics across sentences indicated that the median and low-pass filtering methods
produced comparable signals, when RMSE for each dimension (X, Y, Z) was measured between
the output signals of each filtering method. The mean RMSE and standard deviation values were:
X - 0.1883± 0.0745mm; Y - 0.1545± 0.0802mm; and Z - 0.2702± 0.1376mm. These RMSE values
suggested that the off-line filtering approach was well within the experimental bounds required by
the application of real-time feedback.
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Figure 4. An example of the effects of filtering method on a tongue movement signal recorded during the sentence, “Tom took

the tasty teas on the terrace”, with (a) showing the raw signal, (b) the off-line filtered signal, and (c) the on-line filtered signal.
The top row is the signal decomposed into the three dimensions (X, Y, Z) and the bottom row is its 3D trajectory. The high

frequency noise seen in (a) is removed by both methods. The range of the axes in (a) is greater due to noisy spikes.

3.6.3 Metric Computation

The AWS values obtained during off-line and on-line computations were compared using a Bland-
Altman analysis approach (Bland and Altman 1999, 1986). Figure 5 shows the typical correlation
and difference plot associated with the Bland-Altman analysis.

The coefficient of determination for the two methods was 0.9082, and visual analysis revealed that
the majority of samples had excellent agreement. Given the high correlation, the sum of squared
errors of prediction was within acceptable limits for real time feedback (< 150mm3).

4. Conclusion

In summary, while addressing challenges associated with data acquisition using the Wave system,
we compared two methods of data post-processing and metric derivation - an offline “gold” standard
and an on-line method developed in-house for a specific real-time data streaming purpose. Overall,
the on-line procedures were comparable to the off-line procedures. These results demonstrated
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Figure 5. Bland-Altman plots comparing on-line to off-line AWS derivation.

that we can derive various metrics, AWS and beyond, to characterize movements of the speech
articulators in real time and use this information for the development clinical applications that
require real-time or near real-time data display. The techniques presented here ensure reliable
derivation of these measures in an automatic and operator independent manner.

Both clients and clinicians would benefit from a system that affords augmented feedback through
movement visualization while providing the underlying computational requirements of an experi-
mental rehabilitation framework. The aforementioned techniques have been instantiated computa-
tionally in a research prototype and experimental apparatus. This apparatus has been deployed to
investigate the impact of various visual feedback factors on clinical outcomes (Yunusova, Kearney,
et al. 2017).

Limitations in the current study are left for future work. These include an in-depth analysis
of the current state-of-the-art offline filtering methods, missing samples reconstruction, and the
decision boundary for reconstructing or discarding data.
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